

Tabla Rosa

Marked Wall Company of the Company o

Internet Transit

AN MARKEN MARKEN

Connecting to the **Edge** of the Internet

Overview of this Internet Transit section

- Start assuming no knowledge
- Assume the Internet exists
- To get connected, connect to someone who is already connected
- Internet Transit service
 - Measurement and pricing models
- Exercise these definitions with
 - The Internet Transit Playbook

The Internet

- Network of Networks
- Organic from ARPANET, NSFNET
- Commercialization 1994
 - From "Planned economy Internet"
- Corporate interests 1997 onward
 - Limited information sharing
- Evolution: "Global Internet Peering Ecosystem"

The Global Internet Peering Ecosystem

Definition: The **Global Internet Peering Ecosystem** models the internal structure of the Internet as a set of Internet Regions (typically bound by country borders), each with its own **Internet Peering** Ecosystem.

The Global Internet Peering Ecosystem

Definition: An Internet Region is a portion of the Internet, usually defined by geographical boundaries (country or continent borders), in which an Internet Peering ecosystem is contained.

The Global Internet Peering Ecosystem

• **Definition**: The **Internet Peering Ecosystem** is a community of network service providers that interconnect their networks in various business relationships within an Internet Region.

• **Definition: Internet Transit** is the business relationship whereby an entity provides (usually sells) access to the Internet.

"Internet → this way"

• **Definition**: An **Internet Service Providers** (**ISP**), also called a "Transit Provider", is an entity that sells access to the Internet.

Internet Transit Service

- Announce Reachability
- Metered Service
- Simple
- "Internet→
 This Way"
- Equivalent Notations

Internet Transit Pricing Model

- Typically metered
- \$/Mbps
- Volume measured at 95th percentile
- **Definition**: The **95th Percentile Measurement Method** (also called 95/5) uses a single measurement (the 95th percentile 5 minute sample for the month) to determine the transit service volume for monthly transit fee calculation.

95th Percentile Billing Calculation

- 5 minute samples
- Month of deltas
- 95th percentile
- Max(in,out)
- Origin of 95th?

Question: at 95th I send 500Mbps and receive 800Mbps. My transit is priced at \$10/Mbps. What is my monthly Internet transit bill?

- a) \$5,000
- b) \$8,000
- c) \$13,000
- d) None of the above

Internet Transit Billing Calculation (95th Percentile Measurement)

Origin of the 95th Percentile

- Charged based on pipe capacity
- T1 Internet Service pricey
- Paid as if you filled it up 24/7
- Peak usage bursty penalties
- 95th allows for 5% bursts
- Market adopted it

Transit Pricing with Commits

- Volume discounts
- Contracts with terms and duration

Commit	Unit Price	Mi	inSpend		
10 Mbps	\$12	per Mbps	\$120 /mont	h	
100 Mbps	\$5	per Mbps	\$500 /mont	h	
1 Gbps	\$3.50	per Mbps	\$3,500 /mont	h	
10 Gbps	\$1.20	per Mbps	\$12,000 /mont	h	
100 Gbps	\$0.70	per Mbps	\$70,000 /mont	h	
	monthlyBill = n	$\max(T_v * P_c, C * P_c)$)		
	where				
	$T_v = transitVolit$	$T_v = transitVolume_in_Mbps$			
	C = commitLev	el_in_Mbps			
V V VI VI	$P_c = unit \operatorname{Pr} ice_{\perp}$	_at _commitLeve	$l_in_$_per_Mb$	pps	

Internet Price Declines (U.S.)

Internet Transit Growth

- Massive growth in Video
- Price Decline at 30%
- Volume grows at 60%

Implementation of Internet Transit

Architecture evaluates technology and designs a solution Product Mgmt and capacity planning involved

Engineering takes over implementation and early ops

Operations phases transition

Feedback throughout

Always a new wave

Waves of Technology

7 Observations About Internet Transit

- 1. Simple Service
- 2. Metered Service
- 3. Transit Commits and Discounts
- 4. Contract Terms
- 5. Is a Commodity
- 6. Customer-Supplier Relationship
- 7. May have SLAs (joke)

Problem Sets

- 1. I am purchasing Internet Transit from ISP A for \$5 per Mbps with no commits. At the end of the month I send 500 Mbps and receive 800Mbps at the 95th percentile. What is my monthly bill for Internet Transit?
- A) \$5/month B) \$2500/month C) \$4000/month d) \$6500/month
 - (C) Max(500Mbps,800Mbps)*\$5/Mbps=\$4000/month
- 2. I am purchasing Internet Transit from ISP B for \$5 per Mbps but I am considering buying their 1G commit transit product at a price of \$3/Mbps. I still expect to send 500 Mbps and receive 800Mbps at the 95th percentile. Should I commit to 1G?

YES – Commit early Max(500Mbps,800Mbps)*\$5/Mbps=\$4000/month Vs.

1000Mbps*\$3/Mbps=\$3000/month

Next up...

- Exercise your understanding of Internet
 Transit
- Exercise the definitions
- Think about motivations